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ABSTRACT - Several methods have been proposed to use differences in configurations of landmark 
points to measure the amount of shape difference between two structures. Shape difference coeffi- 
cients ignore differences in thc configurations that could be due to the effects of translation, rotation, 
and scale. One way to understand the differences between these methods is to compare the multidi- 
mensional shape spaces corresponding to each coefficient. This paper compares Kendall’s shape space, 
Kendall tangent space, the shape spaces implied by EDMA-I and EDMA-I1 test statistics, the shape 
space of log size-scaled inter-landmark distances, and the shape space implied by differences in an- 
gles of lines connecting pairs of landmarks. The case of three points in the plane (Le., landmarks at 
the vertices of a triangle) is given special emphasis because the various shape spaces can be illus- 
trated in just 2 or 3 dimensions. The results of simulalions are shown both for random samples of all 
possible triangles as well as for normally distributed independent variation at each landmark. Gener- 
alizations to studies of more than three landmarks are suggested. It is shown that methods other than 
those based on Procrustes distances strongly constrain the possible results obtained by ordination 
analyses, can give misleading results when used in studies of growth and evolutionary trajectories. 

Kup~or-ds:  Kendall shape space; tangent space: EDMA; inter-landmark distanccs; multivariate 
analysis: morphometrics: Procrustes distance; thin-plate spline. 

INTRODUCTION 

The field of geometric morphometrics repre- 
sents an important new paradigm for the sta- 
tistical study of variation and covariation of 
the shapes of biological structures. The no- 
tion of shape of used here is that of the rela- 
tive positions of points corresponding to mor- 
phological landmarks. The positions of the 
points can be captured conveniently by their 
coordinates (2 for images or 3 for the actual 
organism). The coordinates must, of course, 
be recorded in a way such that they are unaf- 
fected by variation in a specimen’s location, 
orientation, and scale. The analysis of the 
shapes of outlines will not be considered here. 
Rohlf and Marcus (1993) give a general 
overview of the field of geometric morpho- 

metrics. Bookstein (1991) gives a compre- 
hensive account while Small (1996) covers 
mathematical details. Dryden and Mardia 
(1998) cover many aspects of shape statis- 
tics. (Rohlf, 1999a) discusses some of the 
interrelationships between methods based 
on Kendall’s shape space. Marcus et al. 
(1996) includes both introductory material 
and examples of applications to many fields 
of biology and medicine. The fundamental 
advances of geometric morphometrics over 
traditional approaches (multivariate mor- 
phometrics, e. g., Reyment et al., 1984) are 
in the development of powerful statistical 
methods based on models for shape varia- 
tion rather than the use of standard multi- 
variate methods on ad hoc collections of 
distances, angles, and ratios. 
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Two rather different approaches for the sta- 
tistical analysis of shape have been used. 
1. Analyses that can be interpreted in terms 
of the differences in the coordinates of the 
landmarks after the configurations of points 
have been optimally superimposed (usually 
using least-squares). 
These methods use the Procrustes distance 
(the square root of the sum of squared dif- 
ferences) as a metric for comparing shapes. 
There has been a considerable work in this 
area using the perturbation model described 
by Goodall (1991). The exact distribution 
has even been worked out for certain cases 
(see Dryden and Mardia, 1998, for a dis- 
cussion). Kendall (1981; 1984; 1985) has 
done important initial work. Bookstein 
(1991), Small (1996) and Dryden and Mar- 
dia (1998) are recent texts. Note that the 
thin-plate spline methods (Bookstein, 199 1) 
are based on this approach. 
2. Analyses based on interlandmark dis- 
tances. 
An example is Euclidean Distance Matrix 
Analysis, EDMA, proposed by Lele and 
Richtsmeier (1991) and further elaborated in 
Lele (1993), Lele and Cole (1996), and 
Richtsmeier and Lele (1993). This approach 
uses matrices of all pairs of inter-landmark 
distances. Statistical tests based on bootstrap 
procedures are used because analytical re- 
sults are not available and simple normal 
approximations are not appropriate. Rao and 
Suryawanshi ( I  996) and Richtsmeier et al. 
( 1998) proposed using logs of size-scaled 
inter-landmark distances as shape variables. 
Recently, Rao and Suryawanshi (1998) sug- 
gested the use of angles from triangulation 
of triplets of landmarks. These latter ap- 
proaches do not seem to be based on any ex- 
plicit model for shape variation and assume 
that their shape variables are at least ap- 
proximately multivariate norml. 
One of the purposes of this study is to con- 
trast some of the statistical consequences of 
using these approaches. This will be done 
by comparing the shape spaces implied by 
the various coefficients used to test for dif- 

ferences in shape. Rao and Suryawanshi 
(1996) state that there is no unique way of 
choosing among alternative shape functions 
and that inference based on a particular 
choice of functions will be consistent with 
that based on another choice provided the 
probability distribution can be accurately 
specified. However, it would be difficult to 
relate the exact Mardia-Dryden distributions 
(see Dryden and Mardia, 1998) to the ED- 
MA statistics. The different methods do not 
have the same statistical power against var- 
ious alternative hypotheses (Rohlf 2000). In 
fact the different approaches do not even ob- 
tain the same estimates of the mean shape. 
Thus these approaches are not equivalent in 
practice and naive applications of the vari- 
ous methods may lead to very different con- 
clusions. 
Most of the figures presented below were 
generated using the tpsTri software (Rohlf 
1999b) that runs under Windows 95/98/NT. 
It can be downloaded from the Stony Brook 
morphometrics www site (http:lllifr.bio.sun- 
ysb.edulmorph) and used to further investi- 
gate the morphometric methods described 
below. 

SHAPE DIFFERENCES AND SHAPE SPACES 

Several coefficients have been proposed that 
measure the difference between the shapes of 
a pair of objects. Table 1 lists the coefficients 
that will be considered here. While any of 
these coefficients can be used to develop 
valid tests for the null hypothesis that two 
populations have the same mean shape, tests 
based on different coefficients will differ in 
their sensitivities to alternative hypotheses 
(Rohlf 2000). One way to understand these 
differences in power is to examine the shape 
spaces implied by the use of these coeffi- 
cients. One expects statistical power to be 
lower for distinguishing shapes that are sim- 
ilar according to a particular coefficient. The 
case of p=3 landmarks in k=2 dimensions 
will be emphasized because the shape spaces 
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Table 1 .  Shape spaces for triangles. 

Name Distance coefficient Reflections Representing surface 

Kendall Procrustes distance, d or p Included Surface of sphere, 

Space of preshapes Procrustes distance, d or p Included Surface of 
aligned to a referencc 

Kendall tangent space Euclidean distance using 

radius = 112 

hemisphere, radius = 1 

Flat disk, radius = 1 Included 

EDMA-I 

EDMA-I1 

Rao & Suryawanshi 
1996 

Rao & Suryawanshi 
1998 

- 
orthogonal projcction 
of hemispherc 

T = ratio of the largest to 
the smallest of the ratios 
in the form difference 
matrix 

Z = largest absolute value of 
differenccs in size-scaled 
intcrlandmark distances 

Euclidean distance using two Ignored 
linear combinations of log 
size-scaled interlandmark 
distances 

Euclidcan distance using two Ignored 
interior angles 

Ignorcd 

Ignored 

Approximated using 
principal coordinates 
of In(T) 

Approximated using 
principal coordinates 
of z 
Subset of R’ 

Subset of R2 

can be visualized in 2 or 3 dimensions and 
thus one can appreciate some of their prop- 
erties intuitively. For more than three land- 
marks the shape spaces become high dimen- 
sional and for somc coefficients their metric 
geometry becomes much more complicated, 
Another application of these shape diffcr- 
ence coefficients is in multivariate ordina- 
tion analyses. Matrices of these coefficients 
can be used directly in Principal coordinates 
analysis and various types of multidimen- 
sional scaling analysis (see, for example, 
Jackson, 1991). Because the user will at- 
tempt to interpret any patterns found in such 
ordinations, the space should not constrain 
the distribution of points so as to introduce 
apparent structure in the data when none is 
actually present. This will be shown to be 
a problem for the methods based on inter- 
landmark distances. 

Procrustes distance 

This type of shape distance between a pair 
of configurations of landmark points is usu- 
ally computed by first centering the two 
configurations of landmarks on the origin 
and scaling each configuration to unit cen- 
troid size (the square root of the sum of their 
squared coordinates, Bookstein, 1991). One 
of the configurations is then rotated to align 
it with the other so that d, the square root of 
the sum of squared differences between cor- 
responding coordinates, is as small as pos- 
sible. This quantity, d, is often called a Pro- 
crustes distance but there is a related quan- 
tity, p, to which this term is also applied (see 
below). Gower (1975) gives a general ma- 
trix algorithm to align one set of points to 
another. Bookstein (1991) gives an efficient 
method for 2-dimensional data using com- 
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Figure 1 .  Shape spaces for triangles in the plane. A.  Kendall's shape space for triangles. The points 
show the positions of 2000 random triangles on the surface of a spherc. B. Space of shapes aligned 
to a reference shape. Points on the surface of the hemisphere corrcspond to the same sample of 2000 
triangles. 

plex correlation. Procrustes distances arc al- 
so used to compare multivariate ordinations 
where it makes sense to reflect axes if that 
would improve the fit (because the orienta- 
tions of rnultivariate axes are usually arbi- 
trary). In morphometrics reflections should 
not be performed automatically because dif- 
ferences that appear as reflections may ac- 
tually be part of the overall shape difference 
(see Goodall, 1991, and Rohlf, 1996). Of 
course if one has sampled, for example, a 
mixture of left and right insect wings then 
will need to reflect some specimens in order 
for them to be aligned in a consistent way. 
In multivariate applications it may also be 
useful to allow the size of one configuration 
to shrink to cos p because that will improve 
the fit by reducing d to sin p .  This is called 
a full Procrustes fit by Dryden and Mardia 
(1998). Cole (1 996) reviews some early us- 
es of this coefficient. 
Kendall (1981; 1984) showed that the shape 
space corresponding to the Procrustes met- 
ric is a kp-k-l-k(k-1)/2 - dimensional mani- 

fold (2p-4 dimensions for 2D and 317-7 di- 
mensions for 3D). A manifold is a genera- 
lization to higher dimensions of a curved 
surface in 3 dimensions. Small ( 1  996) gives 
an introduction to the topic and discusses 
applications to morphometrics. For p=3 and 
k=2 (triangles in the plane) the manifold 
corresponds to the surface of an ordinary 
sphere with radius 1/2 (this is a 2-dimen- 
sional curved space). Every possible shape 
maps to a unique position in Kendall shape 
space. Because this space for triangles cor- 
responds to the surface of a sphere it seems 
natural to consider measuring the distance 
between shapes as geodesic (great circle) 
distances, p ,  rather than as chord distances, 
d, from a partial Procmstes fit. These two 
quantities are related as p = 2sin-' (d/2) be- 
cause p is also the angle between vectors 
connecting the points with the center of the 
GLS hemisphere (see below). The maxi- 
mum value for p is d 2  (the distance be- 
tween an object and the shape maximally 
different from it). Figure 1A depicts this 



On the use of shupe spuces to compare niorphometric nietliods 13 

A B 

Figure 2. Tangent spaccs. A.  An orthogonal projection of the GLS space of preshapes aligned to the 
reference shapc (SCC Figure 1B). The central point corresponds to the reference or point of tangency, 
the pole in Figure 1B. B. Stereographic projection of Kendall’s shape space in Figure 1A. The cen- 
ter corresponds to the reference or point of tangency, the North pole in Figure 1A. A point at thc 
South pole becomes a point at infinity. 

space with points corresponding to a ran- 
dom sample of 2000 triangles superim- 
posed. The distribution of points on this 
surface is uniform (Kendall, 1985). Be- 
cause this shape space is curved i t  has a 
non-Euclidean geometry and special statis- 
tical methods have to be used. For exam- 
ple, Goodall ( 1  99 I )  developed a statistical 
test based on ratios of squared Procrustes 
chord distances. 
An important property of manifolds is that 
for small variation (i.e., locally) they can be 
approximated by an Euclidean tangent 
plane. Thus one can construct a linear ap- 
proximation to shape space by projecting 
points from shape space onto an Euclidean 
tangent space that has the same number of 
dimensions as shape space. If shape varia- 
tion is sufficiently small (shapes distributed 
in a small region around the point of tan- 
gency), then no information is lost. The 
point corresponding to the average shape is 
usually used as the point of tangency be- 
cause that provides the best approximation. 

Standard linear multivariate methods can 
then be used on the data points in the tan- 
gent space. Two projection methods are 
commonly used: stereographic projection of 
Kendall shape space (Bookstein shape coor- 
dinates are a special case, Small, 1996) and 
an orthogonal projection of the GLS hemi- 
sphere. The GLS hemisphere (see Figure 
1B) is the space one obtains when all trian- 
gles are least-squares aligned to a reference 
shape. It is a hemisphere with radius 1 (or a 
hyper-hemisphere if p . 3 ,  see Rohlf, 1999a). 
Figure 2A illustrates the orthogonal projec- 
tion of the GLS hemisphere shown in Fig- 
ure IB onto a plane tangent its Pole (equiv- 
alent to a top view of the hemisphere). Kent 
(1994) calls this space Kendall tangent 
space (but Dryden and Mardia, 1992, call it 
Kent tangent space). Note that the density of 
points in the Kendall tangent space appears 
uniform. Figure 2B shows the results of a 
stereographic projection. The points are 
concentrated near the origin of this space. 
Not all points are shown because those at 
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Figure 3. Shape space for triangles using shape 
variables based on logs of interlandmark dis- 
tances as defined by Rao and Suryawanshi 
(1  996). The center corresponds to an equilateral 
triangle. The points correspond to a random 
sample of 2000 triangles. 

the point opposite the point of tangency map 
to infinity. Polar coordinates were used in 
Figure 2 to emphasize the relationships to 
the hemisphere and sphere in Figure 1. In 
practice the tangent. space is overlaid with a 
Cartesian coordinate system (partial warps 
are one example). 

Distance in log inter-landmark distance spuce 

Rao and Suryawanshi (1996) proposed com- 
paring shapes using distances based on the 
logs of the distances between all pairs of 
landmarks. Specifically, they used 

d (6) = Hd (1) 

as a set of m-1 shape variables, where d is 
the vector of logs of the m distances between 
pairs of landmarks, H is an (m - 1) x m ma- 
trix of rank m-1 such that H1 = 0 (a Helmert 
matrix with the first row deleted), and 
m = (p - 1) p/2  (the number of distances be- 
tween pairs of landmarks). Equation 1 pro- 
jects the vector of distances onto a space or- 
thogonal to their mean (thus size-scaling by 
removing the log of the geometric mean dis- 
tance). The matrix H is not unique. Howev- 
er, the rows are orthogonal so different 
choices simply correspond to rotations of the 

space (which have no effect on distances be- 
tween shapes). Richtsmeier et al. (1998) pro- 
posed an equivalent shape difference - the 
Euclidean distance between shapes using 
logs of scaled distances as variables. Rao 
and Suryawanshi (1996) proposed the use of 
traditional multivariate analyses on the resul- 
tant shape variables. For example, they used 
generalized distance to quantify the amount 
of difference in shape between two samples. 
It is easy to depict the implied shape space 
for triangles in the plane because Equation 
1 generates just two shape variables in this 
case (m-1=2). Figure 3 was prepared by 
projecting points corresponding to triangles 
along the latitude and longitude lines in the 
upper half of the sphere in Figure 1A. 
Points corresponding to a random sample of 
2000 triangles are superimposed. As in the 
case of the EDMA-I and EDMA-I1 methods 
described in the next section, shapes and 
their reflections map to the same point (i.e., 
differences due to reflection are ignored). A 
point at the center of this space corresponds 
to an equilateral triangle and the three arms 
correspond to the three kinds of isosceles 
triangles (the arms extend to infinity as the 
base of an isosceles triangle goes to zero). 
For p>3 the space will require more dimen- 
sions and will be more complicated and dif- 
ficult to visualize. There will be m arms ex- 
tending out to infinity with “webs” connect- 
ing pairs, triples, etc. of arms corresponding 
to one, two, etc. inter-landmark distances 
going to zero. Another complication is that 
the central point in the space corresponds to 
a shape with equal inter-landmark distances. 
However, for p>3 (2D data) or p d  (3D da- 
ta) such shapes are not physically realizable. 
Such shapes cannot be a part of a shape 
space and thus there is a gap in the center of 
this space that should be taken into account 
by any statistical methods. It is interesting 
to attempt to visualize the case of 4 land- 
marks in the plane. The space will be 5-di- 
mensional because m = 4 x 312 = 6. There 
will be 6 arms extending to infinity. At in- 
finity the cross-section of each arm will re- 
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semble Figure 3 (because, with one distance 
equal to zero, the remaining possible varia- 
tion correspond to that of a triangle). The 
central point in this space corresponds to a 
shape with all 4 inter-landmark distances 
equal to one another (which is not possible 
for a configuration of points in 2D) so there 
must be a gap at the center of this space. 

Euclidean distance matrix analyses, 
EDMA-I and EDMA-ZZ 

This approaches uses as variables all 
m = p @  - 1)/2 distances between pairs of 
landmarks. Euclidean distances are influ- 
enced by size but not by the effects of dif- 
ferences in translation and orientation of an 
object. However, they are also not sensitive 
to shape differences that appear to be due to 
reflections (see Rohlf, 1996). These vari- 
ables allow an object to be represented as a 
point in an rn-dimensional form space (it is 
a form space rather than a shape space be- 
cause variation in size has not been removed, 
Goodall, 1991). Richtsmeier and Lele (1993) 
attempt to illustrate this space but, unfortu- 
nately, they show the region corresponding 
to form space upside down and to the wrong 
relative scale. Note that, except for p=3 and 
k=2, the space is of unnecessarily high di- 
mensionality. Only kp - k - ( k  - 1) k/2 di- 
mensions are required for form space. For 
example, forp=4 and k=2, m=6 although just 
5 dimensions are needed. For more land- 
marks the difference is much greater. For ex- 
ample, for p=25 and k=2, m=300 even 
though only 47 dimensions are needed. 
Lele and Richtsmeier (1991) define a form 
difference matrix to compare two objects. It 
is made up of the ratios of the correspond- 
ing inter-landmark distances for the two ob- 
jects. They use the statistic T (the ratio of 
the largest to the smallest of the ratios in the 
form difference matrix) to test for shape dif- 
ferences between the two objects. Lele and 
Cole (1995; 1996) refer to this approach as 
EDMA-I. When comparing two samples of 
objects they use average distances within 

each sample. Lele (1993) provides an im- 
proved method for estimating the average 
distances. Both methods use the actual dis- 
tances rather than size-scaled distances. 
That means, of course, that an average 
shape will be determined mostly by the 
shapes of the largest objects. 
It is useful to investigate the shape space 
implied by the use of T in order to under- 
stand some of its statistical properties. This 
seems difficult to do analytically so the fol- 
lowing numerical procedure was used. A 
systematic sample of 6 2  triangles that cov- 
ered the space of all possible triangles (ex- 
cluding reflections) was generated and a 
62x62 matrix of ln(T) values generated. A 
Principal Coordinates Analysis‘ (Gower, 
1966) was then performed on this matrix to 
obtain the best 3-dimensional Euclidean 
view of the implied shape space. The add- 
a-point technique (Gower, 1968) was then 
used to project into this space points corre- 
sponding to triangles along the latitude and 
longitude lines in the upper half of the 
sphere in Figure 1A. The result is shown in 
Figure 4A (a view from above). The add-a- 
point technique was also used to project 
points corresponding to a random sample of 
triangles. Figure 4B show views from the 
side to show some of the complexity of the 
surface. 
The center of this space corresponds to an 
equilateral triangle and the three arms cor- 
respond to the three kinds of isosceles tri- 
angles. The arms extend out to infinity to 
correspond to an isosceles triangle with one 
side of zero length. For p>3 the space will 
require more dimensions and will be much 
more complicated and difficult to visualize. 
As in the previous section, there will be m 
arms extending out to infinity and “webs” 
connecting all pairs, triples, etc. of arms re- 
flecting the possibility that any pair, triple, 
etc. of edges could tend towards zero si- 
multaneously. As before, the central point in 
the space corresponds to a shape with equal 
inter-fandmark distances but for p>3 (2D 
data) or p>4 (3D data) such shapes are not 
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Figure 4. Perspective views of the EDMA-I shapc space for triangles. A .  Top view. B. View some- 
what from the side. The center corresponds 10 an equilateral trianglc. The points correspond to a ran- 
dom sample of 2000 triangles. 

physically realizable. There is again a gap 
in the center of this space that needs to be 
taken into account. 
Lele and Colc (1  995; 1996) proposed an al- 
ternative statistic, Z ,  which is the maximum 
absolute value of the arithmetic difference 
between the two size-scaled average form 
matrices being compared. They call this 
approach EDMA-11. They found that scal- 
ing by the length of a baseline resulted in 
higher power than scaling by centroid size. 
This method was proposed (Lele and Cole, 

1996) as a method with higher power than 
EDMA-I and their postings on the mor- 
phmet listserver claimed it had much high- 
er power than generalized T2-tests using 
Bookstein shape coordinates. These results 
are in error due to a bug in their software 
(Rohlf 2000). The procedure described 
above was carried out to visualize the shape 
space implied by the Z-statistic (both cen- 
troid size and baseline size scaling were 
used). The results are shown in Figure 5 (A 
and B give perspective views of the space 

A B C 

Figure 5. Perspectivcs vicw of the EDMA-I1 shape space for triangles using centroid si.x scaling. A .  
Top view. B. View somewhat from the sidc. C. Top view using the length of the AB baseline for 
sire scaling. The center corresponds to an eyuilatcral triangle. The points correspond to a random 
sample of 2000 triangles. 

,~ 

santini
,~
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Figure 6. Shape space for triangles based on two 
of the interior angles (Rao and Suryawanshi, 
1998). The point at the center corresponds to an 
equilateral triangle. The grid is as in previous 
figures. The points correspond to a random sam- 
ple of 2000 triangles. 

based on centroid size scaling and C gives 
a similar plot when the length of the AB 
baseline is used for size scaling. As before, 
the center corresponds to an equilateral tri- 
angle and the three arms correspond to the 
three kinds of isosceles triangles. However, 
the arms do not extend out to infinity un- 
less baseline scaling is used. For p>3 (2D) 
or p>4 (3D) there will be a gap at the cen- 
ter of this shape space. 
Recently, Richtsmeier et al. (1998) pro- 
posed another shape statistic, the square 
root of the sum of squared differences be- 
tween the logs of size-scaled distances. 
This leads to thesame shape space as the 
Rao and Suryawanshi (1996) method de- 
scribed above. 

Differences in angles 

Rao and Suryawanshi (1998) proposed that 
a natural method of comparing shapes is to 
compare angles from a triangulation of land- 
marks. Because the three angles in a trian- 
gle sum to a constant (n radians), only two 

arbitrarily selected angles are used from 
each triangle to be used as shape variables. 
Samples of shape are then compared by us- 
ing standard multivanate methods on these 
shape variables. While several transforma- 
tions are suggested that should reduce de- 
partures from normality, their examples are 
based on the raw angles. Figure 6 illustrates 
their shape space for triangles. Note that the 
distribution of random triangles is not uni- 
form - the density is much higher in the 
three corners (corresponding to isosceles tri- 
angles) than along the sides (corresponding 
to oblique triangles). 

STATISTICAL MODELS 

The random samples of all possible shapes 
uscd in the previous section are useful to 
study the metric geometry of a shape space 
but they do not correspond to reasonable 
models for the type of variation one expects 
to find in practical applications. Goodall’s 
(1991) perturbation model is a simple alter- 
native. In this model the I, X k matrix of co- 
ordinates for the ith specimen are given by 

Xi = a;(p + Ei)Qi + l o f  ( 2 )  

where a; is a scale factor (size), p is the 
mean shape, E; is a matrix of zero-mean 
Gaussian displacements, Qi is a kxk  rotation 
matrix (reflections excluded), 1 is a vector 
of all ones, and oi is a vector correspond- 
ing to translation of the specimen. Parame- 
ters ai, Qj,  and (0; are nuisance parameters 
whose effects are to be ignored when study- 
ing shape variation. Matrix X i  when strung 
out as a vector has a covariance matrix 

0 c,, where cp is the covariance 
matrix for the landmark points (the rows of 
Ei) and C, is the covariance matrix for the 
dimensions (the columns of Ei). In this 
study only the simplest case was investigat- 
ed - independent homogeneous variation 
around each mean landmark position such 
as what one might expect from digitizing er- 
ror (E = o2 I and E, = I). This model was 

= 

P 
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Figure 7. Triangles used as the mean shapes in 
the sampling experiments and the figures that 
follow. A. An isosceles trianglc. B. An oblique 
triangle. Both triangles are at a Procrustes dis- 
tance of p 7 / 6  from an equilateral triangle. 

investigated not because it is always rea- 
sonable biologically but because such a null 
model enables us to investigate distortion 
introduced by various methods of shape 
analysis. If a method seems to reveal inter- 
esting covariation patterns under this model 
then they must be due to an artifact of the 
method. 

For Kendall shape space this model gener- 
ates circular scatter around the position cor- 
responding to the mean shape. Kendall tan- 
gent space also yields circular scatter as 
long as the point of tangency is close to the 
mean (as it should be in most practical ap- 
plications). For example, the isosceles trian- 
gle in Figure 7A (using CT = 0.05) produces 
the scatter shown in Figure 8A (the skewed 
triangle would show the same scatter if the 
point corresponding to its mean were used 
as the point of tangency. If the point of tan- 
gency were taken far from the sample mean, 
the scatter would become elliptical with its 
principal axis orthogonal to the direction to- 
wards the origin. 
The stereographic projection of a distribution 
with circular density contours in Kendall 
shape space always yields a distribution with 
circular density contours because a stereo- 
graphic projection is a confomal mapping (a 
transformation that preserves angles). How- 
ever, unless the point of tangency is at the 
mean, the density contours will not be con- 
centric and the distribution will be skewed 
away from the origin. Bookstein shape coor- 

In U2 

A B 

Figure 8. Tangent space with a distribution of 2000 random triangles superimposed. The isosceles 
triangle in Figure 7A was used as the mean shape. A .  Kendall tangent space with the mean shapc 
used as the reference. B. Stereographic projcction corresponding to Bookstein rhape coordinatcs (cdge 
BC used as the baseline). 

santini



On the use of shape spaces to compare morphometr-ir methods 19 

U2 

A B 

Figure 9. Shape space based on shape variables defined by Rao and Suryawanshi (1996) with the dis- 
tribution of 2000 trianglcs superimposed. A .  Distribution using the isosceles triangle in Figure 7A as 
the mean. B. Distribution using the oblique triangle i n  Figure 7B as the mean. 

dinates are a special case. They correspond 
to using as a reference the collinear triangle 
with the free point at the origin and using a 
baseline defined by the other two land- 
marks, The skewness is very noticeable in 
Figure XB because the point of tangency is 
not very close to the mean shape. The vari- 
ance of the scatter increases greatly for 
mean shapes further from the point of tan- 
gency (the standard deviation increases with 
the square of the distance). If a stereo- 

graphic projection using the mean shape as 
the reference were used then the resultant 
distribution would resemble Figure 2B but 
with a smaller variance. 
The results are very different for the other 
shape spaces examined. Figure 9 shows the 
distribution of points for the shape variables 
defined by Rao and Suryawanshi (1996). 
Figure 10 shows the projections of the same 
points onto the shape space implied by the 
EDMA-I statistic. Similar strong patterns 

A B 

Figure 10. A perspective view of EDMA-I shape space with distributions of 2000 random triangles 
superimposed A .  Distribution using the isosceles triangle in Figure 7A as the mean. B. Distrihution 
using the skewed triangle in Figure 7B as the mean. 
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A B 

Figure 11. A perspective view of EDMA-I1 shape space using centroid size scaling with distributions 
of 2000 random triangles superimposed. A .  Distribution using the isosceles triangle in Figure 7A as 
the mean. B .  Distribution using the obliquc triangle in Figure 7B as the mean. 

are shown in Figure 11 for the EDMA-I1 
statistic using centroid size scaling and in 
Figure 12 for baseline size scaling. Figure 
13 shows the same samples of points using 
two angles as shape variables as suggested 
by Rao and Suryawanshi (1998). The ori- 

entation of the scatter would be quite dif- 
ferent if a different pair of angles were se- 
lected. Tn all of these examples, the size and 
orientation of the sample points are strong- 
ly influenced by the location of the mean in 
shape space. 

A B 

Figure 12. A perspective view of EDMA-I1 shape space using bascline scaling with distributions of 
2000 random triangles superimposed. A. Distribution using the isosceles triangle in Figure 7A as the 
mcan and the basal edge as size. B .  Distribution using the oblique triangle in Figure 7B as the mean. 

santini
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A R 

Figure 13. Shape space based on angles as defined by Rao and Suryawanshi (1998) with a sample of 
2000 triangles superimposed A. Distribution using the isosceles triangle in Figure 7A as the mean. 
B. Distribution using the oblique triangle in Figure 7B as the mean. The angle at landmark A is plot- 
ted along the abscissa and the angle at B is plotted along the ordinate (other choices would give dif- 
ferent results). 

DISCUSSION 

Rao and Suryawanshi (1996, 1998) suggest- 
ed the use of traditional methods of multi- 
variate analysis (D2, MANOVA, CVA, etc.) 
to test for shape differences using their 
shape variables (log size-scaled interland- 
mark distances or angles from a triangula- 
tion). Unless the mean shapes are very si- 
milar (ideally with inter-landmark distances 
nearly equal so that the distributions of 
points are near the center of their shape 
space), this is unlikely to work well because 
the pattern of covariance is strongly influ- 
enced by mean shape. When the mean 
shapes are different, covariance matrices 
will be heterogeneous and that makes stan- 
dard statistical tests inappropriate. Although 
it may not be detectable in practical appli- 
cations where sample sizes are small, distri- 
butions can be far from multivariate normal 
depending upon the location of the mean in 
shape space. Figure 9B shows an example 
of a distribution whose density contours 
would be concave on the side away from the 

center of the space. The use of bootstrap 
and permutation test methods (such as used 
by Lele and Richtsmeier, 1991, and Lele 
and Cole, 1996) seems to be a more reason- 
able approach for testing statistics with such 
properties. 
Another problem caused by the non-lineari- 
ty of the shape space is that a simple aver- 
age of a sample of shape variables can be a 
poor estimate of the true shape. If the mean 
shape for the distribution in Figure 9B were 
further from the center of the space then the 
sample average would be located outside of 
much of the region of high density. As Rao 
and Suryawanshi (1996) point out, the aver- 
age can even be impossible - outside of the 
space of physically realizable shapes. For 
example, the average of isosceles triangles 
in two different arms of the Rao and 
Suryawanshi (1996) shape space can yield a 
point outside of their shape space because 
the space is not convex. In such cases, they 
suggest an ad hoc procedure using metric 
scaling ( e .  g., principal coordinates analysis, 
Gower, 1966) to obtain a valid shape. Lele 
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Figure 14. Sampling experiment to demonstrate effect of mean shape on covariation in the Rao and 
Suryawanshi (1996) shape space. A. Mean configuration of landmarks for population I .  B. Mean con- 
figuration for population 2 (landmark 3 moved). C. Projection onto the first two principal component 
axes of the Rao and Suryawanshi (1996) shape space with 100 observations from each population. 
The first principal component axis for each population are shown. D. Plot of the first two relative 
warp axes (PCA of Kendall's tangent space). Within-group principal component axes are not shown 
because the distributions are circular. Population 1 shown with filled circles ( 0 )  and population 2 
shown with open circles (0). 

(1993) makes a similar suggestion for the 
EDMA methods. This problem is caused by 
the fact that these methods do not properly 
take the non-linearity of shape space into 
account. These problems do not arise when 
working with Procrustes methods and 
Kendall shape space. 
Morphometric studies using ordination 
analyses such as principal components or 
principal coordinates analysis also need to 

take the metric geometry of shape space in- 
to consideration. One cannot give a biologi- 
cal interpretation to the fact that one sample 
has a larger variance than another sample or 
that one sample has the same or different 
principal components than another without 
taking into account any constraints or dis- 
tortions due to the shape space itself. A sim- 
ple artificial example may be useful to show 
the importance of this point. Figure 14A and 
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B show the mean configurations of land- 
marks in 2 populations (they differ only in 
the location of landmark 3). A random sam- 
ple of 100 observations from each popula- 
tion was simulated by adding homogeneous 
uncorrelated normally distributed error at 
each landmark. The Rao and Suryawanshi 
(1996) shape variables were computed and 
a principal components analysis performed 
using all 200 observations. Figure 14C 
shows the projections onto the first two 
principal component axes. The first within 
group principal components are also shown. 
The distributions are elongated due to the 
fact that the interlandmark distances are not 
equal (inter-landmark distances 2 - 3 or 3 - 
4 are much smaller than the distances be- 
tween other landmarks). The orientation of 
the scatter for the two populations are dif- 
ferent because a different pair of landmarks 
has the shortest inter-landmark distance and 
thus are located in different arms of the 
shape space. Thus, as we have seen before, 
the covariance structure depends upon the 
mean shape. Tests for shape differences 
would be complicated by having to allow 
for heterogeneous covariance matrices. Rao 
and Suryawanshi (1996, 1998) ignore this 
problem and compute pooled within-groups 
covariance matrices. This is expected to 
cause a loss in power. If Figure 14C was the 
result of an actual biological application, a 
researcher would undoubtedly try to find a 
biological explanation for the elongated 
scatters and their differences in orientation. 
Any real differences in the covariation in the 
two samples would have to be fairly strong 
in order to be detectable. A comparable 
analysis of the points projected onto 
Kendall’s tangent space (an analysis of rel- 
ative warps) yields two more or less circu- 
lar scatters (see Figure 14D). The first with- 
in group principal component axes are not 
shown because the scatters are circular and 
thus their directions poorly defined. This is 
the kind of result one would wish to obtain 
for populations that differ only in mean 
shape and all variation within groups is due 

to homogeneous uncorrelated error at each 
landmark. 
In studies of growth or of evolutionary tra- 
jectories it is even more important take the 
metric geometry of shape space into ac- 
count. Trajectories must remain within the 
space or they may yield nonsensical results 
(i.e., physically impossible configurations of 
points). Ad hoc adjustments such as princi- 
pal coordinates analysis may yield feasible 
shapes but the shapes will then no longer 
necessarily lie along the estimated trajecto- 
ry. Richtsmeier and Lele (1993) argue that 
the fact that their approach can yield im- 
possible shapes is a desirable feature be- 
cause they believe that discovering that an 
estimated form is impossible could be used 
to answer questions concerning constraints 
on physical systems. Actually, obtaining an 
impossible estimated shape only shows that 
the method of estimation is not sensible. It 
is unreasonable to expect trajectories in a 
nonlinear space to follow straight lines or 
other simple curves that do not take the 
geometry of shape space into account. 
When using Kendall’s shape space one also 
needs to take its curvature into account. The 
simplest trajectories would be great circles. 
If shape variation is small enough (as it usu- 
ally is), then the Kendall tangent space ap- 
proximation will be satisfactory and one can 
test how well the trajectories can be ap- 
proximated using standard regression meth- 
ods. The tpsRegr software (Rohlf, 1998a) 
can be used to fit straight lines. Other soft- 
ware can be used to fit curves or piece-wise 
straight lines as required by biological con- 
siderations. The problem of geometrically 
impossible shapes will not arise so that one 
can concentrate ones attention on biological 
issues. 
The study of various proposed alternatives 
to Kendall’s shape space makes one appre- 
ciate the rigor and insight of Kendall’s 
work. Alternative models will no doubt 
continue to be proposed. It would be help- 
ful if such proposals included comparisons 
against existing methods. 
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